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How do we train a robot?







Multiple tasks
Expert demonstrations
Rewards, labels



= Self-supervision
= (Curious exploration
* Learning “common sense”

Multiple tasks
Expert demonstrations
Rewards, labels






... even earlier?



Single to Multicellular



Single to Multicellular  competition = collaboration
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Single to Multicellular  competition = collaboration
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Compositionality has been useful in language ...

Is there a red shape
above a circle?
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[Andreas et. al. 2016]



How to implement compositionality in hardware?



Modular Co-evolution of Control and Morphology




Modular Co-evolution of Control and Morphology

Cylindrical Limb




Modular Co-evolution of Control and Morphology

Cylindrical Limb

Configurable Motor Joint




Modular Co-evolution of Control and Morphology



Modular Co-evolution of Control and Morphology



Modular Co-evolution of Control and Morphology
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Modular Co-evolution of Control and Morphology
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Modular Co-evolution of Control and Morphology

D Acts as single agent upon joining
Y Rewards are shared!

Potential
Magnetic Joint



Modular Co-evolution of Control and Morphology
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Acts as single agent upon joining
Rewards are shared!

» Input = Local Sensory State

» Output = Torques, Link, Unlink




Modular Co-evolution of Control and Morphology
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Consider the task of “standing up” ...




Vanilla Reinforcement Learning

Standing Task | |

maximize Y-axis




How to learn compositional controllers?



Idea: Shared policy network across limbs




Idea: Shared policy network across limbs
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How to adapt when morphology changes?



How to adapt when morphology changes?




Network as reusable LEGO Blocks



Network as reusable LEGO Blocks
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Network as reusable LEGO Blocks
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Network as reusable LEGO Blocks
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Network as reusable LEGO Blocks
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Network as reusable LEGO Blocks
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Network as reusable LEGO Blocks
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Network as reusable LEGO Blocks
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Network as reusable LEGO Blocks
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Dynamic Graph Networks



BTW, basically curriculum learning but in hardware
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How well does it generalize?



Generalization w/o Fine-tuning

twice as many limbs
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a bit crazy... is it even possible in real world?



Self-Assembling Robots in the Real World

[Mark Yim’s Lab at UPenn] [Daniela Rus's Lab at MIT]

Also: [Modular Snake Robot — Howie Choset’s Lab at CMU]



code & data at
https://people.eecs.berkeley.edu/~pathak/
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